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Abstract
Being the largest and most accessible organ of the human body, the skin could offer a window to diabetes-related
complications on the microvasculature. However, skin microvasculature is typically assessed by histological analysis,
which is not suited for applications to large populations or longitudinal studies. We introduce ultra-wideband raster-
scan optoacoustic mesoscopy (RSOM) for precise, non-invasive assessment of diabetes-related changes in the dermal
microvasculature and skin micro-anatomy, resolved with unprecedented sensitivity and detail without the need for
contrast agents. Providing unique imaging contrast, we explored a possible role for RSOM as an investigational tool in
diabetes healthcare and offer the first comprehensive study investigating the relationship between different diabetes
complications and microvascular features in vivo. We applied RSOM to scan the pretibial area of 95 participants with
diabetes mellitus and 48 age-matched volunteers without diabetes, grouped according to disease complications, and
extracted six label-free optoacoustic biomarkers of human skin, including dermal microvasculature density and
epidermal parameters, based on a novel image-processing pipeline. We then correlated these biomarkers to disease
severity and found statistically significant effects on microvasculature parameters as a function of diabetes
complications. We discuss how label-free RSOM biomarkers can lead to a quantitative assessment of the systemic
effects of diabetes and its complications, complementing the qualitative assessment allowed by current clinical
metrics, possibly leading to a precise scoring system that captures the gradual evolution of the disease.

Introduction
Diabetes mellitus is a complex metabolic disease with

increasing worldwide prevalence, leading to several health
complications and aggravating healthcare costs1,2. The
disease affects the macro- and the microvasculature of
several organs, including the heart, brain, lower limbs,
retinas, peripheral nerves, kidneys, and skin1–4. In the
skin, diabetes-induced microvasculature alterations indi-
cate an adverse disease prognosis, as they compromise

tissue perfusion and oxygenation, as well as skin integrity,
which can lead to cutaneous infections3,5–8, neuropathy
with loss of sensation, ulcerations, and other comorbid-
ities3,5–7. These microvascular changes may also indicate
cardiovascular complications such as coronary artery
disease (CAD), carotid artery disease, and peripheral
arterial disease (PAD)9–11 and occur early in the devel-
opment of diabetes3,4,12. Therefore, assessment of skin
microvasculature could lead to a novel means of mon-
itoring diabetes onset and the progression of associated
vascular complications, allowing quantification of the true
burden of the disease on the vascular system rather than
disease course predictions offered by risk factors.
Currently, the characterization of diabetes stage and its

complications in patients relies on the assessment of clin-
ical symptoms and signs. In many instances, questionnaires
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and scoring systems are employed to assess the presence
and quality of peripheral neuropathy symptoms and signs
such as neuropathic pain, decreased perception of light
touches or muscle weakness, and can be combined with
clinical tests assessing pathophysiological parameters5,6.
Such assessments may offer subjective readings, are time-
consuming, and generally evaluate the progression of the
disease and its complications at infrequent intervals, during
which diabetes has advanced significantly enough to yield
large pathophysiological changes that present as clinical
symptoms relating to loss of function of different organs
and/or pain.
Disease manifestations in the skin microvasculature

could serve as a means to observe the multi-systemic
effects of diabetes and its complications in a quantitative
fashion and possibly lead to finer and more detailed
information in the course of the disease based on gradual
changes that are not perceivable as clinical symptoms.
Skin as the largest and most easily accessible organ could
serve as a window for diabetes microangiopathy and sta-
ging of the disease. However, routine assessment of epi-
dermal features and dermal microvasculature requires a
method appropriate for safe, longitudinal, direct, and non-
invasive measurements. Located under the highly-
scattering epidermis, dermal vasculature is not generally
accessible to optical microscopy methods, such as con-
focal or two-photon microscopy13,14. Other methods,
such as high-frequency ultrasound15–18, hyperspectral
imaging19,20, nailfold capillaroscopy21,22, and optical
coherence tomography (OCT)23,24, have various advan-
tages. However, in general, these technologies do not
provide sufficient resolution, contrast, and/or penetration
depth to visualize skin microvasculature and hence
application has mostly been restricted to differentiating
patients with diabetes from healthy subjects23,24.
Although certain methods have demonstrated micro-
vascular variations between individuals with and without
diabetes, to the best of our knowledge, none of these
methods have been utilized to classify disease progression
or its complications or employed to examine the corre-
lation between microvascular imaging biomarkers and
diabetic complications. Such information is an important
goal for an imaging method, as it would address a current
gap in diabetes research associated with disease staging.
Currently, only crude, and infrequent assessments of
disease complications known to affect the quality of
delivered healthcare are done25,26, as elaborated in the
discussion section of this paper.
It has been demonstrated that OCT angiography

(OCTA) and ultra-wideband raster scan optoacoustic
mesoscopy (UWB-RSOM) both have the potential to
indirectly detect vasculature by capturing small signal
variations resulting from micro-flows, thereby presenting
non-invasive approaches for evaluating cutaneous

changes in human skin microvasculature23,27–33. In this
work, we have chosen to focus on UWB-RSOM due to
certain key features. UWB-RSOM is a notably robust
method for visualizing deep dermal microvasculature
features (up to 1.5 mm deep) and this ability will enable
our search to identify novel biomarkers of skin micro-
angiopathy in diabetes. Furthermore, RSOM offers
detection with an enhanced signal-to-noise ratio due to
the generation of optoacoustic signals within blood ves-
sels primarily. This phenomenon allows for optimal
microvascular imaging of the skin, while retaining high
contrast due to the relatively high absorption of hemo-
globin at the wavelength of 532 nm28,34–39. Furthermore,
it was important to obtain highly detailed cross-sectional
images of human skin at high penetration depth because
these images would offer valuable information for diag-
nosis, treatment monitoring, and translational research
from understanding skin physiology and pathology and
indeed UWB-RSOM can provide such images to a depth
of ~1.5 mm.
We therefore employed UWB-RSOM to evaluate the

effect of diabetes on skin, offering the first in vivo
insights on the relation of dermal and epidermal fea-
tures and diabetes complications. To this end, we per-
formed measurements on 143 subjects including healthy
individuals without diabetes and participants with dia-
betes. The diabetic group comprised of participants with
previously diagnosed diabetes and no other symptoms,
participants with diabetes and peripheral neuropathy
and participants with diabetes and macrovascular
atherosclerotic complications. We were specifically
interested in exploring how diabetes progressed, as
evidenced in this study by the presence of different
complications, effects on different dermal and micro-
vascular components and whether it could be correlated
to any of the calculated skin features. We postulated
that we could employ image analysis techniques to
detect and quantify RSOM skin features associated with
the stage of diabetes mellitus, and this would be an
improvement to the currently done characterization
based on clinical symptoms and comorbidities.

Results
RSOM imaging and biomarker computation
To enable quantitative analysis of diabetic skin

microvascular features, we collected RSOM measure-
ments from 95 participants with diabetes and 48
volunteers without diabetes and developed an imaging
analysis pipeline to compute skin biomarkers (Fig. 1).
RSOM illuminated the surface of the skin over the pre-
tibial area at 532 nm and scanned with an ultrasound
transducer with bandwidth from 10MHz to 120MHz
and central frequency of 50MHz over a 4 × 2 mm2

field
of view (FOV, Fig. 1a, see RSOM imaging system in
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“Methods” section). Three-dimensional RSOM images
(Fig. 1b, see image reconstruction in “Methods” section)
were reconstructed over two frequency bands within the
120MHz bandwidth employed. Band-selected recon-
structions implicitly segmented vessels of different sizes;
larger vessels (40–150 µm) are seen in the 10–40MHz
band, whereby smaller vessels (<10–40 µm) are seen in
the 40–120MHz band. Vessels seen in the two different
bands are color-coded in the rendered images (red: lar-
ger vessels; green: smaller vessels) so that finer vascu-
lature is highlighted in the presence of larger vessels
(Fig. 1c). To quantify the differences observed by visual
inspection of the RSOM images, as well as to extract
relevant label-free RSOM biomarkers, we developed and
validated a RSOM image analysis pipeline including two
segmentation methods (see layer and vasculature seg-
mentation section in “Methods” section). Briefly, a layer
segmentation algorithm based on graph theory and
dynamic programming40 identified and separated the
epidermis and dermis, as visually marked on the images
(Fig. 1c, white dashed lines; see layer segmentation sec-
tion in “Methods” section and Fig. S2). The second
method employed a vessel segmentation algorithm41 to
identify and quantify vascular structures in the dermis
layer (Fig. 1d; see vessel segmentation section in
“Methods” section and Fig. S3). Quantification included
the computation of the vessel number and the diameter

of the different vessels identified. Validation of the seg-
mentation approach was performed by comparing the
RSOM computed biomarkers of mice skin with histolo-
gical analysis (see validation section in “Methods” sec-
tion and Figs. S2 and S4).
Based on this RSOM image analysis pipeline, we

computed and differentially analyzed six RSOM image
features (see biomarker computation section in “Meth-
ods” section): (1) the total number of small vessels (with
diameters <40 µm; 40–120MHz band) in the dermal
layer; (2) the total number of large vessels (with dia-
meters >40 µm; 10–40MHz band) in the dermal layer;
(3) the total vessel number in the dermal layer; (4) the
total blood volume in the dermal layer, computed as
ratio of the total number of volume elements (voxels)
occupied by the segmented vessels over the total number
of voxels in the image; (5) the epidermal thickness, and
(6) the epidermal signal density. The selection of small
vs. large vessels based on the 40 µm cut-off value was
explained (see “Methods” section) and a more detailed
analysis based on a finer vessel classification is shown in
Fig. S5.

Skin microvasculature differences between healthy
volunteers and participants with diabetes
We first analyzed RSOM skin images of the lower

extremities (distal pretibial area) of 95 participants with
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Fig. 1 Computation pipeline of skin biomarkers from RSOM images. a Schematic of the RSOM system employed for skin measurements,
comprising two fiber bundles for illumination and a high frequency ultrasound transducer (UT) that was raster scanned over the skin surface. RSOM
signals are recorded on the pretibial area of the lower extremities of both healthy volunteers and participants with diabetes, after which volumetric
image reconstruction (IR) is performed. b A reconstructed RSOM volume image. The volumetric RSOM image is segmented (IS) to identify the
epidermis layer and dermal vasculature, which are used to subsequently compute biomarkers. c Segmentation of the cross-sectional RSOM image
into the epidermis (EP) and dermis (DR) layers of the skin (white dashed lines). The EP thickness and EP signal density biomarkers were computed
from the segmented EP layers in the RSOM images. d Vessel segmentation of the segmented DR layer of the skin. The numbers of vessel branches
and vessel diameters were automatically calculated; the red dots indicate positions of vessel branches. The segmented vessels in the DR were used to
calculate the vessel numbers and total blood volume biomarkers. IR image reconstruction, IS image segmentation, VS vessel segmentation, BC
biomarker computation, scale bar= 500 μm

He et al. Light: Science & Applications          (2023) 12:231 Page 3 of 15



diabetes and 48 volunteers without diabetes, where the
characteristics of study participants are listed in Table 1
(see data grouping section in “Methods” section).
Inspection of 2-band RSOM images of the skin (Fig. 2)

visually exemplifies differences between a healthy volun-
teer and a participant with diabetes mellitus. Figure 2a
depicts an image from a 36-year-old female volunteer
without diabetes, while Fig. 2b shows the corresponding

Table 1 Characteristics of study participants

Participants with

diabetes mellitus

(DM) (95)

Participants with

DM and no

complications (45)

Participants with

DM, neuropathy

and no ASCVD (25)

Participants with

DM, neuropathy

and ASCVD (25)

Healthy

volunteers

(48)

P-value

Age (years) 68 ± 12 63 ± 19 70 ± 10 76 ± 7 64 ± 13 ns

Disease duration (years) 20 ± 16 12 ± 11 27 ± 17 23 ± 16 0 ns

Sex (male/female) 42/56 24/19 9/18 6/19 27/21 n/a

BMI (kg/m²) 27 ± 8 27 ± 6 30 ± 8 28 ± 4 26 ± 7 ns

Diabetes type (1/2) 21/74 7/36 11/14 3/22 n/a n/a

NSS 4 ± 4 0 4 ± 4 7 ± 2 n/a n/a

NDS 4 ± 4 0 4 ± 4 6 ± 3 n/a n/a

HbA1ca (%) 7.1 ± 1.1 7.1 ± 1.6 7.2 ± 0.7 6.9 ± 0.9 n/a n/a

Data is presented as the mean ± SD unless stated otherwise. Participants with diabetes (n= 95) were further divided into three subgroups: Participants with DM and
no complications [n= 45, participants with diabetes, but without neuropathy and without atherosclerotic cardiovascular disease (ASCVD)]; Participants with DM,
neuropathy, and no ASCVD (n= 25, participants with diabetic neuropathy and without ASCVD); Participants with DM, neuropathy and ASCVD [n= 25, participants
with diabetic neuropathy and ASCVD/PAD]
DM diabetes mellitus, ASCVD atherosclerotic cardiovascular disease, PAD peripheral arterial disease, BMI Body Mass Index, NSS Neuropathy Symptom Score, NDS
Neuropathy Disability Score, HbA1c glycated hemoglobin, ns not statistically significant, n/a not applicable
aHbA1c values were not recorded for the 27 participants with diabetes and without complications
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Fig. 2 Skin imaging of the lower extremities (distal pretibial region) of healthy volunteers and participants with diabetes using clinical
RSOM. a Sectional RSOM image of healthy skin. b Sectional RSOM image of skin from a participant with diabetes but without neuropathy. MIP
images of the EP and DR layers in the coronal views corresponding to (a, b) are displayed in (c, d) and (e, f), respectively. g–I Comparisons of
computed biomarkers between healthy volunteers and participants with diabetes. g Total number of small vessels (with diameter ≤40 μm) in DR
layer. h Total number of large vessels (with diameter >40 μm) in DR layer. i Total numbers of vessels in DR layer. j Total blood volume of the DR
vasculature. k Average thicknesses of the EP layers. l Signal densities of the EP layers. The healthy volunteer (control) group had a population of 48,
while the group of participants with diabetes had a population of 95. *P < 0.05, **P < 0.01, and ***P < 0.001, respectively. Scale bar= 500 μm. EP
epidermis, DR dermis
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image from a 42-year-old male participant with diabetes.
The images are rendered as maximum intensity projec-
tions (MIP) of the entire volume scanned and depict the
epidermal (EP) and dermal (DR) layers, reaching a depth
of ~1.5 mm. The typical RSOM appearance of healthy
skin shows a dense signal from the epidermis layer (cor-
onal view, Fig. 2c, d) and a vascular network in the dermal
layer (coronal view, Fig. 2e) that comprises several blood
vessels of various diameters. Conversely, the dermal vessel
density (coronal view, Fig. 2f) is far lower in the partici-
pant with diabetes mellitus compared to the healthy
volunteer, a finding that is confirmed by three-
dimensional skin visualizations (see Suppl. Movie. 1
and 2). Due to the loss of fine dermal vasculature, the
diabetic skin exhibits a characteristic high-contrast
boundary between the epidermal and dermal layers that
is not present in the healthy skin.
A next step was to examine the correlation of the six

computed biomarkers (see Fig. 1c, d) to diabetes status
(Fig. 2g–l). We found that the mean number of small
vessels (Fig. 2g) was ~2.8 times less in participants with
diabetes than in the volunteers without diabetes
(3.45 ± 2.62 vessels versus 9.78 ± 3.41 vessels). A
Mann–Whitney U-test showed statistically significant
differences between the mean number of small vessels in
healthy vs. diabetic subjects (P < 0.001). The mean num-
ber of large vessels (Fig. 2h) was about 1.5 times less in the
diabetic compared to the healthy group (13.39 ± 11.30
vessels versus 20.34 ± 8.32 vessels, P < 0.05). This suggests
that the systemic impacts of diabetes on vasculature are
more prominent in small vessels than in larger vessels.
These results were corroborated by analyzing the full
band RSOM image (Fig. 2i), revealing the total vessel
number in the volume examined. The total number of
vessels was found to be 16.87 ± 9.30 for diabetic partici-
pants vs. 30.12 ± 9.87 for healthy volunteers (P < 0.01).
The total blood volume in the DR layer was also

markedly different between the diabetic and healthy
groups (Fig. 2j), with values of 1.58 ± 0.90% and
4.21 ± 1.10%, respectively. The Mann–Whitney U-test
here also showed significant differences between the
healthy and diabetic subjects (P < 0.001). Analysis of the
EP layer also demonstrated statistically significant chan-
ges between the two groups. The mean values of epi-
dermal thickness were 105.27 ± 17.04 µm for healthy
volunteers and 81.03 ± 23.06 µm for participants with
diabetes (Fig. 2k) with P < 0.05. Likewise, the signal den-
sity of the EP layer (Fig. 2l) in the reconstructed seg-
mented volume, which contains contributions from
melanin and capillaries, was markedly lower in the par-
ticipants with diabetes than in the healthy volunteers
(P < 0.05).
The relation between RSOM features and age

(see Fig. S6), disease duration (see Fig. S7), body mass

index (see Fig. S8) and HbA1c values (see Fig. S9) were
investigated and shown in the supplementary results.
We found that these parameters did not show obvious
correlation with the RSOM biomarkers and did not
significantly influence the outcome of our study. We
have computed the Spearman correlation value between
age/disease duration /HbA1c /BMI with the vascular
biomarkers TBV (Total blood volume) and SVN (Small
vessel number), which showed no significant correlation
as presented in supplementary Table I. In addition, we
also applied multivariate logistic regression analysis to
compute the statistics of the two biomarkers TBV and
SVN with adjustment of age/disease duration /Hb1Ac
/BMI, which also revealed no significant association
between these vascular biomarkers and characteristics
of the participants (supplementary Table I). There were
no significant differences in age, Hb1Ac and BMI values
between the participant groups with type 1 or type 2
diabetes (supplementary Table V).

Quantification of RSOM biomarkers in diabetic neuropathy
We next investigated the relationship between periph-

eral diabetic neuropathy and microvasculature via the
extracted RSOM label-free biomarkers. Diabetes is a
chronic disease with systemic complications that generally
evolve with time and affect several systems (e.g., cardio-
vascular, nervous etc.). For the cardiovascular system in
particular, diabetes affects all of parts of the cardiovas-
cular system resulting in cardiovascular disease being the
leading cause of death among participants with diabetes.
Therefore, the question of understanding severity is per-
haps more critical than the separation of diabetic from
healthy groups. Indeed, while diabetes encompasses a
continuum of stages, a diagnostic test simply separates
healthy individuals from participants with diabetes based
on a threshold value. Consequently, we foresee RSOM
playing an important role in quantifying benchmarks or
features associated with these different stages of diabetes.
To address this question, we first examined RSOM fea-
tures obtained from measurements of participants with
diabetes without complications and measurements from
participants with diabetes and different severities of
neuropathy. The severity of diabetic neuropathy was
clinically evaluated using the Neuropathy Disability Score
(NDS) and the Neuropathy Symptom Score (NSS)42,43.
We divided the diabetic group into three categories: those
with no complications (NC, n= 45), those with low score
neuropathy (LN, n= 13; 1 ≤NDS ≤ 5 or 1 ≤NSS ≤ 5) and
those with high score neuropathy (HN, n= 12; NDS > 5
or NSS > 5). Representative RSOM images from the
healthy group and the three diabetic groups are depicted
in cross-sectional (sagittal) views (Fig. 3a–d) and coronal
views (images parallel to the RSOM scan plane) from the
EP (Fig. 3e–h) and DR (Fig. 3i–l) layers. The images
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confirm a reduced vascular density in the DR with pro-
gression of the disease and its complications. Moreover,
observation of the coronal views of the EP layer depicts
clearly resolved superficial skin ridges in the healthy skin,
which change into an amorphous pattern without ridge

definition depending on disease status, especially for the
groups with diabetic neuropathy.
Quantitative comparisons of the performance of different

RSOM features are presented in (Fig. 3f–i). Overall, the
count of small vessels (Fig. 3m) demonstrated statistically
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significant differences between the three diabetic groups,
i.e., healthy versus NC (P < 0.01), NC versus LN (P < 0.05),
and LN versus HN (P < 0.001). As shown in (Fig. 3m), the
neuropathy grade is visible in the count of small vessels
(<40 µm diameter). However, the presence of neuropathy
had no significant effects on the number of large vessels
(Fig. 3n). This finding is also reflected in the total vessel
number between the healthy and the NC (P < 0.05), as well
as between the LN and HN groups (P < 0.01). No marked
changes were observed between the NC and LN groups.
The computation of blood volume (Fig. 3p) demonstrated a
similar performance to the small vessel count, with the NC
group exhibiting significantly lower blood volume com-
pared to healthy group (P < 0.01). The total blood volume
was further reduced in the LN compared to NC group
(P < 0.05). A significant difference in total blood volume
was observed between the LN and HN groups (P < 0.001).
The EP layers of the NC group were markedly thicker

when compared to the healthy volunteers, while neuro-
pathy decreased the epidermal thickness significantly
(Fig. 3q). An unpaired t-test supported significant differ-
ences between the healthy versus NC (P < 0.05), as well as
the LN versus HN (P < 0.05). The differences between the
NC versus LN groups were even more significant
(P < 0.01). The overall optoacoustic signal density of the
EP layer (Fig. 3r) decreased in NC groups, compared to
the healthy and NC groups (P < 0.01).
In addition, we have computed the Spearman correla-

tion values between age/disease duration /HbA1c/BMI
with the vascular biomarkers TBV and SVN in the NC,
LN, and HN groups, and found no significant correlations
as presented in supplementary Tables II and III. We
applied multivariate logistic regression analysis to com-
pute the statistics of the two biomarkers TBV and SVN
with adjustment of age/disease duration /Hb1Ac /BMI,
which showed no significant association between the
vascular biomarker and participant parameters (supple-
mentary Table IV).

Quantification of RSOM biomarkers in diabetic neuropathy
and atherosclerosis
We were also interested in exploring the association

between RSOM features and macrovascular athero-
sclerosis. Most of the diabetic subjects with athero-
sclerosis enrolled in this study had also been diagnosed
with neuropathy. Therefore, participants with diabetes
were divided into two groups: diabetic subjects with
neuropathy and no atherosclerosis (NnA, n= 25), and
diabetic subjects with neuropathy and atherosclerosis
(NA, n= 24). Representative cross-sectional (sagittal)
views and coronal views of the DR layer from the two
groups (Fig. 4a–d) showed marked differences. There
were significant differences in the numbers of small, large,
and the total number of vessels between the group with

and the group without atherosclerosis (Fig. 4e–g). The
small vessel counts again exhibited the most statistically
significant difference (P < 0.001) between the two groups,
compared with the total vessel count (P < 0.01) and large
vessel count (P < 0.05). In addition, the total blood volume
(Fig. 4h) was significantly reduced in diabetic participants
with atherosclerosis (P < 0.001). Conversely, athero-
sclerosis had no apparent effect on the epidermal thick-
ness (Fig. 4i) or the optoacoustic signal density of the EP
layer (Fig. 4j).
While no other imaging method has previously studied

imaging biomarkers in relation to severity of diabetes
microangiopathy, the pilot RSOM data collected herein
has been shown to be able to classify participants with
diabetes based on skin microvascular changes. Typically,
previous imaging studies could only detect changes by
comparing monitored parameters of healthy and diabetic
populations, demonstrating a function that can be also
achieved in a straightforward way using a blood test. In
comparison, the RSOM features can be used to separate
participants with diabetes from healthy individuals with
high accuracy. For example, using the small vessel num-
ber (SVN) as the differentiating biomarker, a simple
classification model demonstrated a 90.2% accuracy with
a 93.1% sensitivity, an 80.0% specificity and an area under
the Receiver Operator Characteristic (ROC) curve of 0.93
(see Fig. S11). However, we do not envision RSOM for
simple diagnostic tests as above, but rather in its possible
role to study the state of the vascular system on a per-
sonalized basis and, in the future, contribute to assigning
a more informative “health score” as elaborated in the
discussion.

Discussion
The skin has been heralded as a window to assessing

systemic health conditions. This premise has so far held
true for identifying several conditions, for example,
manifestations of systemic sclerosis, lupus erythematosus,
sarcoidosis, or several types of infections based on
superficial features appearing on the upper layers of the
epidermis44. In this work, we employ RSOM as a novel
technique that can provide high-resolution imaging under
the skin surface and a detailed assessment of dermal
microvasculature and other skin features. RSOM is the
only technique available that can non-invasively provide
highly detailed three-dimensional images with virtually
isotropic resolution and precise cross-sectional images of
optical contrast through the deep skin dermis layer.
Therefore, it enables new opportunities for three-
dimensional investigation of sub-surface skin features
and new ways to use the skin in identifying disease than it
is possible with the traditional superficial inspection. We
note that previous studies based on OCTA have offered in
vivo insights into the diabetic skin microvasculature but
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did not reach the deep skin dermis layer compared to
RSOM. Furthermore, in our study, RSOM skin features
are associated with the stage of diabetes mellitus, as
reflected by the presence of different diabetes-related
complications. Successfully accomplishing these goals
would introduce a new label-free and portable technology
for quantifying diabetes complications, possibly serving in

the future as a portable tool for studying and monitoring
disease progression with fine precision, complementing
symptom-based assessments.
The relationship between skin microvasculature and

diabetes stage has not been previously investigated in a non-
invasive manner, due to the lack of tools that are capable of
detailed assessments of fine vasculature. Likewise, no
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technologies used in other imaging studies to date have
examined the relationship between biomarkers detected
in vivo and disease states. High-frequency ultrasound has
been applied to assess skin morphology in participants with
diabetes mellitus15–18. However, speckle effects prevent
ultrasound from visualizing microvasculature, i.e., vessels of
<100 µm in diameter45, without applying contrast agents
(microbubbles), which limits routine application in humans.
Hyperspectral imaging (HSI) assesses oxy- and deoxy-
hemoglobin concentrations in the skin19,20, but this method
cannot visualize skin microvasculature, as it suffers from
low resolution and quantification accuracy caused by var-
iations in skin absorption and scattering properties. Nailfold
capillaroscopy circumvents the scattering problem, due to
the relative transparency of the nail bed, and has been
employed to observe capillary abnormalities of diabetic
participants21,22. However, thicker, opaque, or pigmented
nail folds challenge the accuracy of the measurements46,47.
OCT has been employed to assess retinal vasculature in
relation to diabetic retinopathy48–51 or measure the epi-
dermal thickness in participants with type I diabetes mel-
litus52. Similarly, OCT angiography (OCTA) can quantify
impairments of the retinal vasculature in participants with
diabetic retinopathy compared to the control group53,54. In
addition, a few studies have applied OCTA to quantify skin
microvasculature structure and function, showing the pos-
sibility to distinguish between healthy individuals and par-
ticipants with diabetes23,24.
In general, several studies have explored the opportunity

to differentiate between healthy volunteers and participants
with diabetes based on imaging of the skin23,24. Never-
theless, none of these studies thoroughly examined these
changes at different stages of the disease, as reported by the
presence and severity of relevant complications. Herein,
ultra-wideband RSOM resolves skin vessels with diameters
ranging from 10 μm to about 150 μm, allowing a detailed
understanding of the relationship between disease severity
and vessel size, which was not previously possible. The
implications of this ability of RSOM are multi-faceted,
since successful application of the technology could
improve the longitudinal study of diabetes and enable a
method to monitor lifestyle or other interventions in a
detailed, quantitative way that is not available today. RSOM
can play a very different role in comparison to blood glu-
cose measurements. While the latter determines the day-
to-day glucose status and is necessary for reducing hypo-
glycemic incidents, RSOM could monitor an actual state of
diabetes using a measure of systemic damage. Importantly,
cutaneous microvasculature changes could be non-
invasively monitored by means of RSOM frequently, at
intervals close together enough that monitoring allows for
interventions before the appearance of new clinical symp-
toms. Regular monitoring would also provide a more
precise measure of diabetes progression.

We have previously demonstrated that RSOM can pro-
vide detailed images of skin vasculature, and that quanti-
tative information pertaining to dermatological conditions
can be extracted from these images27,32,55,56. However, it
was unclear previously if RSOM would have the sensitivity
to capture diabetes-related changes within skin micro-
architecture. The ability to capture microvascular changes
with RSOM would allow correlations to be drawn with
diabetes severity, which had not been examined before. The
study herein provided RSOM images of the skin of parti-
cipants with different diabetic conditions (diabetes severity).
Six RSOM label-free biomarkers were extracted from these
images: three associated with dermal micro-vasculature
(total vessel count, vessel count for vessels <40 μm in dia-
meter, and vessel count for vessels >40 μm in diameter), and
three associated with bulk measurements, such as the total
blood volume and the thickness and signal density of the
epidermis. The precision/accuracy of our segmentation
methods was further validated by means of relevant animal
studies. More specifically RSOM was also used to image the
skin microvasculature in mice. These measurements were
finally validated via histological analysis of the same skin
region excised after the RSOM measurement. Visual
inspection of RSOM images revealed changes in the pat-
terns observed in the different pathologies. Qualitatively, it
was generally visible that as diabetes progresses, the vas-
cular density in the dermal layer decreases and the epi-
dermis becomes thinner and less light absorbing. Statistical
significance tests performed on features quantitatively
extracted from the RSOM images confirmed that all these
biomarkers are associated with aspects of diabetes pro-
gression and its complications. Moreover, these analyses
identified density of vessels <40 μm in diameter to be the
most indicative marker of diabetes severity, providing the
starkest contrast between the different groups of partici-
pants. The identification of small vasculature as the com-
ponent of the skin that is most affected by diabetes
progression highlights the vulnerability of small vessels to
systemic effects caused by diabetes and suggests that this
marker could possibly be used as a label-free biomarker that
indicates diabetes severity.
The results obtained are consistent with findings based on

histology studies. Diabetes is known to alter human skin
microvasculature, reflecting a systemic effect of the disease.
Participants with diabetic neuropathy demonstrate patho-
logical alterations of the microvessels57, as also observed by
RSOM. Likewise, histological analysis of the skin revealed a
7.2% increase in epidermal thickness in participants with
diabetes and without neuropathy and a 16.5% decrease in
participants with diabetic neuropathy compared to healthy
controls (all P < 0.05)58, a finding also confirmed in the
current study using RSOM (Fig. 3). However, while RSOM
offers a comprehensive view of the human skin, histology
studies afford only partial observations. For example,
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previous analyses of thick samples using confocal micro-
scopy59 confirmed the presence of decreased vascular
densities within the sub-epidermal layers of participants
with diabetes compared to healthy individuals. These find-
ings were also consistent with our RSOM readouts (Fig. 3).
In contrast, histological analysis of thin samples from
superficial skin layers using conventional microscopy60

showed that the dermal vascular density was: (i) sig-
nificantly lower in participants with no or mild neuropathy
but (ii) higher in participants with moderate to severe
neuropathy, always compared to healthy individuals.
RSOM’s ability to capture three-dimensional images of the
entire skin in vivo not only enables longitudinal studies on
the same individual, but also more complete analyses of the
effects of diabetes on the skin.
RSOM represents a potential paradigm shift in the non-

invasive evaluation of skin vasculature, well beyond the
current state-of-the-art. Depending on the wavelength
employed, the method can penetrate several millimeters
under the skin surface. Using laser with a wavelength of
532 nm in this study, we focused on visualizing the first
millimeter of the skin while retaining high contrast due to
the relatively high absorption of hemoglobin in the green
region. Highly detailed RSOM images were showcased
herein both as cross-sectional images and as coronal ima-
ges from different layers. No other method today can
achieve this imaging detail and depth, using label-free
operation. Moreover, an RSOM system is cost-efficient and
can be made highly portable to allow disseminated use.
Therefore, the results point to the use of RSOM as a highly
potent strategy for offering a quantitative assessment of the
effects of diabetes on skin and possibly in diabetes staging.
Other tests that can measure skin changes include simple
visual assessment of the skin surface or Doppler imaging61

to assess changes in blood flow in the skin due to stimuli,
such as the post-occlusive increase of shear stress, hyper-
thermia, or drug applications62,63. Optical coherence
tomography also offers partial views of skin micro-
vasculature33,64. However, none of these methods offers the
quality and detail of RSOM, and consequently, none of
these methods have been considered for assessing skin
microvasculature and diabetes-related alterations.
There are several reports that microvascular changes

occur early in the course of diabetes3,5,7,8,59,60. This
observation points to a prospective study in high-risk
populations to examine RSOM biomarkers at different
stages of disease development, from pre-diabetes to dia-
betes. Such a study could further expand the possible
applications of RSOM, not only as a tool to stage and
monitor the progression of diabetes, but also as a means
for early detection. For example, with RSOM being safe,
portable, and non-invasive, such measurements could be
readily extended to larger-scale and multi-center studies,
in particular as it concerns collection of data for

identifying the early detection power of the RSOM bio-
markers. Likewise, optimization studies could be per-
formed to identify potential differences in different skin
loci of RSOM acquisition and select locations that further
improve performance. Our current RSOM system is
equipped with a monochromatic laser and provides access
to total hemoglobin measurements but does not differ-
entiate further between oxygenated and deoxygenated
hemoglobin. In the future, we aim to employ multi-
spectral RSOM imaging (see Fig. S12) to quantify changes
in both oxygenated and deoxygenated hemoglobin and
extract information on skin metabolism and oxygenation.
These measurements can be used to explain the patho-
physiology of chronic wounds and prognose disrupted
wound healing processes in participants with diabetes
mellitus that result in an enormous cost burden and
decreased of quality of life. Another potential use of
RSOM could be in improving classification of participants
with diabetes by assigning a quantitative “health score”
based on the status of skin features. The current practice
of separating diabetic and healthy populations based on a
simple threshold is a sub-optimal strategy for prevention
and diabetes healthcare25,26 that converts a gradual pro-
gression to a binary distribution. It has been noted25,26

that it is possible to administer better healthcare when the
population is not separated by a threshold but rather
assigned a score so that individuals are better alerted to
their condition, monitored closely and be considered for a
prevention program. A non-invasive portable and label-
free technology such as RSOM could play a vital role in
offering quantitative metrics in high-risk populations and
evaluating possible interventions. Although such strate-
gies apply primarily to participants with type 2 diabetes,
the overall need to improve diabetes staging has been
outlined for both types of diabetes 1 and 225,26.
In summary, we presented the first imaging study cor-

relating in vivo biomarkers to diabetes severity. The data
also represents the first optoacoustic mesoscopy images of
the skin of participants with diabetes, as well as the first
non-invasive in vivo study of the effects of diabetes and its
complications on skin microvasculature and skin micro-
anatomy in participants with diabetes mellitus. RSOM
extracted six label-free biomarkers associated with skin
morphology and microvasculature and identified fine
vasculature as the feature most sensitive to progress of
complications of diabetes. This finding further shows the
promise of RSOM as a potential point-of-care device for
quantifying systemic complications of diabetes and pro-
viding a quantitative score indicative of disease stage. Due
to its safety, portability, low cost, high image quality, and
ability to quantify label-free biomarkers, RSOM may offer
a paradigm shift in the clinical characterization of dia-
betes, assessment of interventions and in prevention
programs.
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Materials and methods
RSOM imaging system
We employed an in-house portable RSOM imaging

system featuring a transducer with a 10–120MHz band-
width and central frequency of ~50MHz (Fig. 1a), which
has been described in detail elsewhere27,65. Illumination
was provided by a pulsed laser at a wavelength of 532 nm.
The repetition rate of the laser was 1 kHz, yielding an
optical fluence of 3.75 µJ/mm2, which is far below the
safety limit according to the American National Standards
for Safe Use of Lasers in humans66. An optically and
acoustically transparent plastic membrane was affixed on
the participant’s skin over the examined position. Both the
laser output and ultrasound transducer (UT) were
mounted on the same scanning head placed close to the
membrane to position the focal point of the ultrasound
detector slightly above the skin surface and maximize
detection sensitivity. For every measurement, we con-
ducted a calibration step by placing the RSOM transducer
in a position so that the most superficial skin signal could
be clearly detected. The scanning head contained water as
a coupling medium. Two mechanical stages (PI, Ger-
many) were used to move the RSOM head. Both the laser
and the controller of the mechanical stages were placed
inside a plastic case, which ensured laser safety for all
participants, as shown in Fig. S1. The scanning field of
view is 4 × 2 mm2 with a step size 7.5 µm in the fast axis
and 15 µm in the slow axis. The axial and lateral resolu-
tions of RSOM is about 4.5 μm and 18.4 μm respectively,
our previous characterization measurements showed that
the resolutions generally remained constant throughout
the whole dermis (1.5 mm deep)27,65.

Recruitment, data grouping, and statistical analysis
One hundred and two (n= 102) participants with dia-

betes and 48 age-matched healthy volunteers were scanned
in total. Participants with diabetes and healthy volunteers
were recruited following approval from the Ethics Com-
mittee of the Faculty of Medicine of the Technical Uni-
versity of Munich (Protocol No 109/17S). All participants
with and without diabetes gave written informed consent
before the planned RSOM examination. RSOM data quality
was evaluated based on our previously developed RSOM
quality evaluation approach and low-quality data was
excluded67. Significantly, higher melanin concentrations in
skin could decrease the penetration depth of our imaging
system. The scanned regions from participants with strong
melanin were excluded to minimize the influence of the
melanin. Finally, RSOM data from 95 participants with
diabetes and 48 healthy volunteers were included in the
current analysis. Included participants were split into three
main groups based on the presence of relevant complica-
tions, such as peripheral neuropathy and macrovascular
atherosclerosis and peripheral artery disease (ASCVD/

PAD). Group A consisted of 45 participants with diabetes
but without complications (neither neuropathy nor
ASCVD/PAD). Group B included 25 participants with
diabetic neuropathy but without ASCVD/PAD. Group C
consisted of 25 participants with diabetic neuropathy and
ASCVD/PAD. The presence and severity of peripheral
neuropathy was assessed by using the neuropathy symptom
score (NSS)42 and painful symptoms were quantified with a
visual analog score ranging between 1 and 10. Peripheral
neuropathy was also assessed using the neuropathy dis-
ability score (NDS)43 in the range of 1 to 10, which included
10 g mono-filament testing, tuning fork vibration percep-
tion, pin prick perception, and temperature perception.
To quantify the effects of neuropathy, Group B was

further divided into two sub-groups with the low NDS
and NSS scores (n= 13, 1 ≤NDS ≤ 5 or 1 ≤NSS ≤ 5) and
high scores (n= 12, NDS > 5 or NSS > 5). Participants
with ASCVD/PAD were characterized either by a history
of cardiovascular events or by having undergone an
arterial revascularization procedure. PAD was character-
ized by the presence of a clinically relevant stenosis in the
peripheral arterial system, as diagnosed by Doppler
ultrasound measurements, which was associated with
intermittent claudication.

Participant preparation and image acquisition
Participants were asked to consume no caffeine or food

for at least 4 h before the RSOMmeasurements. They were
placed in a quiet and dark room and left to relax for at least
5 min. The temperature of the room was held stable at
23 °C during the whole procedure. The measurements were
performed with the participants in the supine position.
Each participant was scanned at 2 symmetric regions of
interest (ROIs, 4 × 2mm2) over the pretibial region of the
distal lower limb. The scan of the dominant leg was used
for further analysis. The pretibial region was used as
representative of skin microcirculation since the partici-
pants with diabetes are prone to developing cutaneous
alterations at this very position. Each RSOM scan lasted
~70 s. Before each scan, the skin was cleaned with alcohol
wipes. Both the participants and the operators used
appropriate goggles for laser safety reasons.

Image reconstruction
Acquired RSOM signals were divided into two fre-

quency bands, 10–40MHz (low) and 40–120MHz (high),
for the 10–120MHz bandwidth. Signals in the two dif-
ferent bands were independently reconstructed. Recon-
structions were based on beam-forming algorithms that
generated three-dimensional images65. The reconstruc-
tion algorithm was accelerated by parallel computing on a
graphics processing unit and improved by incorporating
the spatial sensitivity field of the detector as a weighting
matrix. The reconstruction time of one bandwidth takes
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about 5 min with voxel size of the reconstruction grid at
12 µm × 12 µm × 3 µm. The two reconstructed images
Rlow and Rhigh corresponded to the low- and high fre-
quency bands. A composite image was constructed by
fusing Rlow into the red channel and Rhigh into the green
channel of an RGB image. A weighting factor was intro-
duced for modulating the intensity of the high-frequency
band image. The detail process has been introduced in
our previous work27. The RSOM images can be rendered
by taking the maximum intensity projections of the
reconstructed images along the slow axis or the depth
direction as shown in Fig. 2.

Data quality control
For this study, we recruited 103 participants with diabetes

and 48 healthy volunteers and recorded 302 RSOM mea-
surements (two scans per person). Our previous studies
have shown that motion can significantly affect image
quality, although our motion correction algorithms can
offer marked improvements67,68. However, various motions
from physiological displacements due to arterial pulsation
and heartbeat and unintentional movements of the parti-
cipant may lead to inconsistent motion correction
improvements. Therefore, we developed a quality control
scheme based on the amount of motion in the raw data that
classifies the quality of data collected. The quality control
scheme enables the selection of high-quality datasets, in
which the motion is minimal enough for the motion-
correction algorithm to correct, resulting in consistent
correction improvements and uniform image quality for
quantitative analysis68. After the data quality evaluation,
RSOM datasets of 8 participants with diabetes were
excluded due to serious motion and low image quality.

Skin layer and microvasculature segmentation and
calculation of RSOM-based biomarkers
For layer segmentation, RSOM images were first flattened

based on our surface detection approach68. The recon-
structed volume of the selected frequency band
(10–40MHz) was split into four stacks with 0.5mm thick-
ness along the slow scanning axis. Then, the epidermis layer
in the MIP image of each stack was automatically segmented
by a graph theory and dynamic programming-based
approach (see Fig. S2)40. The segmented boundaries of the
epidermis layer from the four stacks were smoothed to
achieve the final segmented results, as shown in (Figs. 1c and
S2). The thickness of the epidermis layer was calculated as
the average width of the four segmented boundaries. Addi-
tionally, the signal density of the epidermis layer was deter-
mined as the ratio between the sum of the pixel intensity in
the epidermis layer and the total segmented volume of the
epidermis layer in the 4 × 2mm2 scanning region.
The dermis layer was segmented starting from the

bottom boundary of the epidermis layer and extending

1.5 mm deep. In the 4 × 2 mm2 scanning region, the total
blood volume in the segmented dermis layer was cal-
culated as ratio N

T

� � � 100, where N represents the
number of voxels with intensities above 20% of the
maximum voxel intensity, and T is the total voxel
number inside the 4 × 2 × 1.5 mm3 volume. Afterwards,
the vascular mask in the dermis was segmented by the
multi-scale matched filter-based vessel segmentation
algorithm, as shown in (Fig. 1d)41. Based on the mask,
vessel boundaries were extracted, and the corresponding
width of the boundaries was calculated as the vessel
diameter (Figs. 1d and Fig. S3). Then, the centerlines of
vessel boundaries were extracted, and junction points of
the centerlines were counted as the total vessel number
(see Fig. S3). To reduce noise or artifacts, we removed
isolated vessels with lengths <5 pixels (20 µm spatial
resolution divided by 3 µm pixel size is ~7). The total
vessel number was further divided into the small vessel
group and the large vessel group, which can be used to
investigate the diabetes effects on different size of ves-
sels. The small vessel number was determined based on
the number of junction points, where the average dia-
meter of the connected vessel was <40 µm. Corre-
spondingly, the large vessel number was computed as the
number of junction points, where the average diameter
of the connected vessel was >40 µm. The 40 µm cut-off is
a popular value for differentiating small arterioles and
venules from larger or even smaller (5–10 μm) capil-
laries69. Furthermore, smaller vessels (<40 μm) reside
only within the epineurium and endoneurium70, and
endoneurial microvessels are affected with the diabetic
nerves resulting in impaired blood supply (vasa ner-
vorum) and thus diabetic neuropathy71. We also ana-
lyzed this cut-off value of 40 μm based on vessel
diameter distributions of 20 healthy volunteers and 20
participants with diabetes as shown in Fig. S5. The vessel
diameter was equally categorized into 10 groups
according to size (10 µm size ranges from 10 µm in
diameter to 100 µm or more than 100 µm to investigate
the effects of diabetes on different vascular beds. We
noticed that more significant differences of vessel dia-
meter were found above the cut-off value of 40 μm when
comparing healthy participants against participants with
diabetes. Depending on the vessel characteristics of the
studied participants with and without diabetes, the cut-
off value can be altered to maximize sensitivity or spe-
cificity for the intended application. In addition, the
relation between RSOM features and age (see Fig. S6),
disease duration (see Fig. S7), body mass index (BMI)
(see Fig. S8), and HbA1c values (see Fig. S9) were
investigated and shown in the supplementary results. We
found that these parameters did not show obvious cor-
relation with the RSOM biomarkers and thus they did
not significantly influence the outcome of our study.
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Validation of the layer and vessel segmentation methods
The accuracy of the RSOM biomarker computation was

determined by the layer and vessel segmentation methods.
In RSOM images, the epidermal layer signal mostly derives
from the melanin generating a low frequency layer struc-
ture, while the microvasculature contains higher frequency
contents. It is very easy to separate visually the epidermal
layer from the dermal vasculature in RSOM images. To
validate the layer segmentation method, we compared the
results of the proposed automatic segmentation method
with the manual segmentation performed by two well-
trained and independent observers as shown in Fig. S2.
The correlation coefficients between the automatic and
manual segmentation methods are 0.92 (Observer 1) and
0.96 (Observer 2). Furthermore, we collected RSOM data
from the skin of the hip area (4 × 2 mm2) of 8 healthy mice
and compared with the corresponding histological images.
The animal measurements were performed in full com-
pliance with the institutional guidelines of the Helmholtz
Center Munich and with approval from the Government
District of Upper Bavaria. All scanning parameters of the
mouse measurements followed the same configurations of
the human measurements. The RSOM datasets of the 8
mice were reconstructed and analyzed following the same
analysis procedure of the human data. The RSOM image
of mouse skin was segmented into dermis and hypodermis
layers, and the vasculature in the hypodermis layer was
further segmented to compute the RSOM biomarker (total
blood volume). In addition, the dermis thickness of each
mouse was calculated in both histological and corre-
sponding RSOM images. CD31 immunostaining was
performed to evaluate vessel footprints. The total blood
volume in the histological image was computed as the
ratio between the vessel marker area and the total hypo-
dermis area, while the total blood volume of RSOM mouse
image was computed using the same analysis method of
the participants with diabetes data. As shown in Fig. S4,
the dermis thicknesses and total blood volumes showed
very good correlations between values obtained from the
histological and RSOM images (the correlation coefficients
values are 0.94 and 0.91 respectively). Furthermore, our
previous work has made a comparison of capillary imaging
by conventional nailfold capillaroscopy and RSOM55. The
capillary diameter and capillary density, which computed
from the segmented RSOM images, were correlated well
with the nailfold capillaroscopy. Moreover, our approaches
to segment RSOM skin features (including the epidermis
layer thickness and dermal vasculature) were validated in
previous work using histology27.

Statistics
A total number of 95 participants with diabetes and 48

healthy volunteers were grouped together to compute
biomarkers. All metrics were displayed into column table

with mean value and standard deviations as error bar.
Information of age/disease duration /Hb1Ac /BMI
between healthy controls and participants with diabetes,
and differences between the groups with diabetes and
subgroups or individuals with Type 1 or Type 2 diabetes
were evaluated by the mean of the Mann–Whitney U-test
as shown in Table 1 and supplementary Table I to Table
V. To assess the significance of the statistical differences
for the metrics between healthy and diabetic groups, and
sub-groups among participants with diabetes, we per-
formed parametric tests (unpaired t test) for normally
distributed data; otherwise, nonparametric tests
(Mann–Whitney U test) were applied. We have computed
the Spearman correlation to show the relationship among
age/disease duration /HbA1c /BMI with the vascular
biomarkers TBV (Total blood volume) and SVN (Small
vessel number). In addition, we also applied multivariate
logistic regression analysis to compute the statistics of the
two biomarkers TBV and SVN between different diabetic
groups with adjustment of age/disease duration /Hb1Ac
/BMI, and in the analysis of the diabetic neuropathy
groups as well. For the multiple regression analysis, all
variables that were significantly associated with RSOM
biomarkers in the univariate analysis were included in the
model. Statistical significance was defined at P < 0.05.
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